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Abstract

A key assumption underlying query optimization schemes for parallel processing is that their cost
models can anticipate the multitude of effects encountered during the execution phase. Unfor-
tunately, this is rarely the case and the optimal processing is only achieved in a few situations.
However, enriching cost models with further parameters increases likelihood and extent of estimate
errors, thus, does not guarantee better results in general.

In this paper we address the question how to de-couple optimization and execution by transparent
means of parallelism, i.e. once the optimizer determined the degree of parallelism for a group of
operators, the underlying execution engine ensures optimal parallel execution without demanding
any static schedule by the optimizer.

Based on an analytical framework we model both dataflow and processing environment for par-
allel query execution. On this ground we develop the notion of Non-look-ahead Optimality which
reflects an execution strategy’s ability of ad-hoc resource utilization. We prove a tight upper bound
for the processing time of such strategies and show that they are insensitive to skew.

Finally, we model several different strategies and present an execution strategy that fulfills the
desired optimality criteria. The new algorithm outperforms conventional pipeline execution sub-
stantially and is resistant against various kinds of skew as our experiments confirm.

Keywords: Parallel databases, parallel query processing, dynamic load balancing.

1 Introduction

Query optimization in parallel database systems is, following a common approach, split into two
phases [9, 6]: sequential optimization and parallelization. The former involves query rewrites and
join ordering to arrive at an optimal sequential query evaluation plan (QEP). The latter deals with
mapping a sequential QEP to a parallel execution environment leading to a parallel query execution
plan, the final result (cf. Fig. 1).



So far, much research has been devoted to achieve the best possible parallelization of a given
sequential plan [7, 8, 12, 2, 10]. A common approach is to incorporate as many features of the target
architecture as possible into the cost model—e.g. communication costs or hardware description—
and to derive a static parallel schedule based on this information [7, 3]. However, from a validation
point of view increasing the number of features considered during optimization is risky and may
prove a pitfall since errors in the estimates are propagated exponentially [11]. The consequence are
suboptimal parallel schedules. A situation that is exacerbated by data skew—a factor that is hardly
to capture sufficiently by a cost model and, therefore, deliberately ignored in most investigations.

To sum up, the execution of an optimized parallel plan is very likely to diverge from the envisioned
one. The straight forward solution to enrich the optimizer with better statistics is not desirable as
the maintenance costs are too high, the complexity of the optimizing process increases severely, and
the quality of the result is of debatable value only since the cost estimates become more sensitive to
estimate errors.

To overcome these drawbacks a transparent way of using a parallel execution environment is
sought—i.e. the optimizer determines merely the degree of parallelism for a certain QEP, or part
of a QEP, while the execution strategy ensures optimal resource utilization, including appropriate
speedup and scaleup.

In this paper we develop such a means to transparently exploit parallelism. We give a formal
model consisting of two components: a dataflow model and a processing model. The dataflow model
enables a simple and uniform handling of relational algebraic operators and their data dependencies.
The processing model abstracts a parallel environment as queues and processing units. Guided by
this model we discuss the principles to find an optimal solution and introduce the notion of Non-
look-ahead Optimality (NLA-optimality) as a measure of ad-hoc exploitation of pipeline parallelism:
We call a processing strategy NLA-optimal if a processing unit is only idle when no unit of work can
be assigned to it at this very moment. We show that the execution time of a NLA-optimal strategy
is less than twice the theoretical optimum.

We use this framework to model and analyze conventional pipeline execution strategies, as given
in [7], in comparison with DTE, a data parallel algorithm [14, 13]. DTE outperforms PE in most cases
significantly. However, it is not yet NLA-optimal: in typical skew situations, some processors may
become overloaded while others remain idle. We present DTE/R an NLA-optimal strategy which
overcomes this problem by redistribution of the intermediate processing results. The redistribution
adds only little overhead, but pays back significantly in almost every case of skew.

The final contribution of this work is a feasibility study to see whether the discussed concepts
can be carried into effect. We present a comprehensive quantitative assessment of a prototype
implementation which confirms the effectiveness of NLA-optimality. It shows that our analytical
worst-case bound is rather pessimistic compared to the average performance observed.

Related Work. The problem of scheduling queries on parallel environments has attracted a lot
of attention. Hasan and Motwani point out the importance of pipeline parallelism and develop near
optimal scheduling heuristics with respect to minimize communication overhead [7]. Their techniques
apply to a restricted class of query plans, such as star queries and paths of pipelined operators. The
heuristics proposed ignore skew handling as well as intra-operator parallelism. Chekuri et al. develop
a more general treatment and allow for arbitrary query plans using the same cost model [1]. Again,
skew is not considered. Garofalakis and Ioannidis discuss a richer cost model and focus on shared-
nothing architectures [3, 4]. Their scheduling heuristics are also based on the assumptions that
no skew affects the execution. Lo et al. study constraint processor allocation for pipelined hash
joins [12, 2] and extend this approach in [10] to scheduling of separate pipeline segments. For their
simulation model, they assume uniformly distributed attributes and exclude skew situations.
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Figure 1: Two-phase optimization approach

Road-Map. The next section contains a detailed motivation for our focus on pipeline parallelism.
In Section 3, we develop a dataflow model that reflects the relational algebraic structure of the
query to be processed. Section 4 describes the processing model to capture the parallel processing
environment. The basic principles of the algorithms and an analysis, based on the two models, is
given in Section 5. The results of our experiments are presented and discussed in Section 6. Section 7
concludes the paper.

2 Why Pipeline Parallelism?

In a pipeline parallelism scenario, only linear data-streams are considered, i.e. operators with a
chained consumer-producer relationship between them. For binary operators like joins we have to
materialize the second input relation beforehand and store it e.g. in the appropriate hash-table!.
Once this is achieved the tuples of the right-most input relation can be “piped” through (cf. 2).

Our decision to strictly deploy pipeline parallelism and disregard other means of parallelism was
guided by the following considerations.

1. The control-flow within a pipeline is rather simple to handle. Depending on the evaluation
paradigm used, data is either processed on demand (demand-driven) or used to activate the
subsequent operators (data-driven). Both cases can be handled in a closed way, i.e. no interrupt
handling is required to jump between different processing steps like other execution strategies
demand [5].

2. Intermediate results do not have to be fully materialized, i.e. stored in main-memory or on
secondary storage, but are immediately processed by the succeeding operator.

3. Optimizers used in sequential databases can be re-used since the previous point also applies to
sequential optimization and execution. Thus, no new optimizer design has to be undertaken.

4. Every tree-shaped QEP can be decomposed into linear (=pipeline) segments easily [10]. Hence,
pipeline parallelism does not restrict to certain kinds of QEPs only.

5. For certain classes of queries, e.g. star queries, all evaluation plans are linear trees, which
makes pipeline parallelism the only possibility to achieve parallel processing [7], at all.

6. Resource management is easy to control. Since a pipeline can grow only in one direction the
memory requirements need not to be known a priori. Suitable length, and thereby memory
requirements, are automatically determined during the construction of the single hash tables.

I'We focus on QEPs consisting of hash-join operators only since joins are of particular interest in query processing.
Note, all techniques developed in the remainder of this paper apply to arbitrary relational algebraic operators as well.



For the remainder of this paper we assume a join-QEP generated and decomposed by an optimizer
into pipeline segments which will be executed one by one. Moreover, all hash-tables of the particular
segment are already loaded into main-memory. These assumptions are in compliance with related
work, e.g. [18, 12, 7].

3 Dataflow Model

In this Section, we develop an abstract dataflow model to reflect tuple streams between algebraic
operators and their dependencies in a QEP. We are especially interested in a wuniform treatment
that helps avoid tedious distinctions by which operator the particular data was, and by which it is
to be processed.

Let us assume a tree-shaped QEP generated by an optimizer as illustrated in Figure 2. The
basic unit of data transport considered is a tuple. The set of all tuples occurring in a query tree is
denoted by D. All tuples are unique, regardless of their contents, i.e. an algebraic operator applied
to one tuple may entail none, one, or several new tuples all distinct from the original. Consequently,
each tuple d € D is processed by exactly one operator.

Let J = {Xy,...,X,,} contain the join operators of a QEP. In pipeline processing, joins can
be seen as unary operators [13]: A join maps each tuple of its input to a set of output tuples,
i.e. X: D — 2P where 2P denotes the powerset of D. .J can be ordered and thus we refer to single
operators by their indexes {1, ..., m}. Together with tuple uniqueness a mapping p : D — {1,...,m}
can be defined to indicate the target operator for a tuple. The join product of a tuple d is the set of
tuples that are entailed by d ® : D — 2P with ®(d) = X,y (d).

These definitions enable a general treatment of the dataflow without distinction of cases as well
as relationships between operators.

Definition 3.1 A pair (E,Dy) with E C J and Dy C D is called Pipeline Segment of length n if
X; (3" (Do)) = ®'(Dy)
forall 1 <i<n. o

Dy is called input relation and ®"(Dy) result relation of (E, Dg). Moreover, D = |J ®*(Dy) holds.
i

4 Processing Model

This section describes a processing model for a parallel environment on the basis of two components:
a set of queues ), and a set of processing units P. Queues implement tuple sets and a partial temporal
order reflecting the arrival order. Queues are not limited to FIFO-structures, since we do not make
use of the queue’s particular order. The cardinality—i.e. the length—of a queue ¢ is denoted by |q|.
Two queues are distinguished: ¢;, which implements the initial tuple set Dy and q,,; that contains
the result relation after the processing.

4.1 Assumptions

Our model is based on the following assumptions.
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Figure 2: Pipeline Segment

Uniformity of tuple loading. Each tuple takes the same time for loading when assigned to a
processing unit p;—independently of the tuple that was assigned previously to p;, i.e. the
particular tuple arrival order is irrelevant. Tuples differ only in size of the output they entail.

Exclusive processing. A tuple can only be assigned to one single processing unit. A tuple that
is released by a processing unit does not re-appear at any later point of time ¢.

Non-stop processing. Once a tuple d is assigned to a processing unit, ®(d) is generated without
any delay, break or interrupt.

Homogeneity of processing units. The time to generate ®(d) is independent of the particular
processing unit, i.e. all processing units achieve the same speed.

Isolation of processing units. Processing units do not affect each other, even when they consume
tuples from the same queue or append to the same queue at the same time.

We further assume that (1) all hash tables of a pipeline segment fit into main memory and (2)
every hash-look up gives a definite answer, i.e. no further comparison is needed. These two latter
assumptions are justified by our considerations of Section 2. Furthermore, similar assumptions
are common in this area of research [18, 12, 2, 10]. In Section 6, we shall assess these points
experimentally.

4.2 Definitions

All relationships between D, ) and P are temporal. To indicate this fact, we use a time variable
index, e.g. a €; A means that a is element of set A at ¢, while |g|; denotes the length of queue ¢ at
t. For convenience, we write a €[, ;,] A instead of a €; A, Vt € [t1,t2].

Definition 4.1 Let (E, D) be a pipeline segment of length n, and P and @ as defined above. A
Pipeline Processing Strategy (PPS) is a mapping

p:DxT—QUPU{L}

with T = [to,t%) ] and

stop



1. Vde Dy: de€y qin,

2. Vd e @"(DO) o d €, Qout;

3.VdeD: 3t1,t2,t3 eT: /J’[t1,t2] (d) € Q A /"’[tQ,t3] (d) S .P7
4. pife 8] dyeP A ,u[t’l,t’Q](d,) eP,d ed®d = t <t
5. w(di)=p AN p(de)=p = di=ds

where p1;(d) = L means, the location of d is not defined at time ¢. The length of T is called ezecution
time of p. o

The first two constraints demand, that all tuples of the initial relation Dg are in the input queue
before the processing starts, and all tuple of the result relation are elements of the output queue
after the processing terminates. The third point requests the existence of an interval of time for
each tuple, when it is to be processed—consisting of an interval [t,t2] it is stored in one of the
queues and an interval [ta,t3] it is located on a processing unit. There is no delay in between these
intervals, i.e. the tuple directly goes from the queue to the processing unit. Next, a tuple d' part of
the join product of tuple d cannot be processed before d. Finally, a tuple is exclusively processed,
as demanded by A2.

The next issue to discuss is the work needed to process a tuple d, i.e. to generate ®(d). It
consists of two parts: probing against the hash table and generating the new result tuples. The
latter includes allocation of memory or buffer space and passing the result tuple on to the next
processing unit. Thus, the work for a single tuple d totals

w(d) = Wprose(d) + Z Wpass (d;)-
d;e@(d)

According to A1 and A3 we can substitute Wprove (d) by Wprove aNd Wpass(d;) With wpass, yielding

[@(d)|
w(d) = Wprobe + Z Wpass = Wprobe + |@(d)|wpass-

i=1

Because of A3 and A4 work is equal to time. Thus, the time t(*¢9) a sequential system needs for
processing a particular pipeline segment is

t(se0) = (D) = Z w(d).

deD

To handle the processor allocation at a certain time, we introduce the notion of load. The load of a
processing unit p at time ¢ is expressed by

1) () — 1 if3d € D: u(d) = p,
=1,
else.
If no ambiguity appears, the index p is omitted in the following.
As the next example illustrates, two phases of the execution are distinguished since producer-
consumer relationships between processing units may lead to idle times of some processing units:



Example 4.2 Consider a pipeline segment with only two join operators (J = {X;,X2}) and two
processing units (P = {p1,p2}). Furthermore, let p; process X; and pa process M, respectively.
po—processing only the output of p;—stays idle until p; produced its first output tuple. However,
p1 may finish its work before py does. °

We can generalize this case. For each processing unit p; there exist £ () and tg’;) (i) such that
tefto, @) = 1 @) =0
i.e. some processors may be idle before #e (7), and

te[tWa), ] = 1P@)=0

) Ystop

i.e. some processors finish their work earlier than others. This leads to the following definition:

Definition 4.3 For a PPS p with D, T, P and @ as defined above the interval [to, tgﬁ)] with

k) = max{tlt) (i)}

is called startup delay of . Analogously, the interval [tg’;),tg’t‘gp] with

) = min{tls) ()}
is called shutdown delay. o

As the Example shows, shutdown delay cannot be avoided, in general. It rather depends on the
particular data. It furthermore suggests that a strategy can only be optimal if all work entailed per
tuple can be assessed a priori, precisely. Knowledge that is not available beforehand but only after
the join evaluation. Without this look-ahead a strategy can only schedule the currently available
units of work to the best of its abilities.

Definition 4.4 A PPS p is NLA-optimal in an interval T iff for all [t1,t] C T

ta
D ) <Pl = / > lghdt=o0. (1)
i t1

QEQ\{QOM}

<

The left expression holds if during the entire interval at least one processing unit is idle—not neces-
sarily the same one all the time. The right expression allows no interval of length greater than zero
during which a tuple is element of a queue, otherwise the integral cannot equal 0.

Theorem 4.5 Let u be a NLA-optimal PPS and (E, Do) a pipeline segment. The following holds?:

a) The execution time ¢(*) is bound by

Jw) — o _ Litopt)
r

2The proofs of all propositions and theorems presented in this paper can be found in the appendices.



where r denotes the number of available processing units, and ¢(°?%) is the optimal processing
time.

b) Both t(°?Y) and () are bound by #(*¢9) only.

5 Pipeline Processing Strategies

This section is devoted to the description and analysis of different parallelization strategies. To
facilitate the use of u, we introduce the macro occupyProc as a short hand for the following situation:

occupyProc(t,p,q',q") = 3de€ D: 3t u(d,[t',t]) = ¢,
pu(d, [t,t +w(d)]) = p,
Vd € &(d), 3" : p(d,t") ="

The right hand side comprises three parts: First, there is some data in queue ¢’ before t. Second,
d is allocated to processing unit p, thus the join for d is computed. And last, all output data is
appended to queue ¢”.

5.1 Conventional Pipeline Execution

In conventional Pipeline Ezecution (PE), groups of processing units are assigned to single join
operators statically [7]. So, each processing unit can process tuples for one particular join operator
only (cf. Expl. 4.2).

We distinguish the two cases where either the number of joins n equals the number of processing
units r, or n exceeds r.

Casel: n=r

Every processing unit p; is assigned to exactly one join, consumes tuples from an exclusive input
queue ¢;, and appends its entire output to the input queue g;+1 of the subsequent processing unit.
In case there is no successor, the output is appended to the output queue. For this case, PE is
specified by

t,i:l(pi) =0 A |gi| >0 = occupyProc(t,p;, ¢, ¢i+1) (I.1)

with Q = {an =4dq1,---,4n+1 = qout}'
Case2: n<r
In this case, processing units are grouped and every group is assigned to one join. We address
processing units as p;; where ¢ denotes the group and j is the index within the group. r; is the
number of processing units in group ¢ with r; > 1 for all i. Queues are defined as before, i.e.
Q = {(Im =q,---,4qn41 = qout}-

For the choice of (ry,...,r,) € N*—i.e. how to distribute the r —n surplus processing units—the
corresponding load balancing problem has to be considered: The work v; of group ¢ is given by

vi = w(®1(Dy)).

Optimal load balancing demands that each processor is doing the r-th part of the total work, i.e.
for two groups ¢ and k

v; v v; T
—==- & —=—

r; r 147 Tk



with » = > 7; and v = ) v; holds. This load balancing problem has no integer solution, in general.

K3 K3
Thus, only an approximation can be given. The problem of finding a vector (rq,...,r,) € N* with
r; > 1 and > r; = r such that
i

v; v
F = iy _ Y
mzax{ri} "

is minimal is called Processing unit Assignment Problem (PAP). As t(*®) is dominated by the

execution time of the slowest operator in the pipeline, i.e. max{—}, minimizing F' means minimizing
2 r;

t(PE) In Appendix B we give an algorithm that provably minimizes F for a given pipeline segment.
For the remainder of this Section we assume a grouping of processing units such that F' is
minimal. We can describe PE by:

3t,i,7 : L(pij) =0 A |gi| >0 = occupyProc(t, pij, ¢, ¢i+1)- (1.2)

For simplicity we omit a treatment of the case that more than one processing unit/queue pair matches
the condition. For more detailed invariants capturing this ambiguities, also for further invariants
presented below, we refer the reader to [15].

Corollary 5.1 PE is not NLA-optimal if there is no integer solution to the associated PAP.

In this case, the performance of PE suffers from the discretization error [18, 16].

Theorem 5.2 Let (E, Dqy) be a pipeline segment of length n. PE is NLA-optimal iff n = 1.

However, cutting a QEP into segments of length 1 would give away all advantages of pipeline
processing as pointed out in Section 2.

5.2 Data Threaded Execution

With Data Threaded Ezxecution (DTE) every processing unit p; has shared access to ¢;, and exclusive
access to a local queue ¢;. In contrast to PE the p; are not only performing one but every join
operator in a pipeline segment, as necessary. Every processing unit appends all the output to its
local queue—unless no further processing is required—from which it preferably consumes tuples.
Only in case the local queue is empty, tuples from g;, are consumed. DTE is described by the
following two invariants:

t,i:li(p;) =0 A |g;| >0 = occupyProc(t,p;, qi,q') (1.3)
and

3t,i: l(p;) =0 A |gi]l =0 A |gin| >0 = occupyProc(t,pi, qin,q') (1.4)
where ¢ = ¢; if p(d) < n and gy otherwise.
Example 5.3 Let (E, Do) be a pipeline segment of length n = 2, |P| = 4, and |Do| = 3. Further-

more, |®(d)| = 10%,d € Dy and |®(d')| = 10%,d' € (D), i.e. in each join, every tuple finds 102
partners.



Processing this pipeline segment with DTE leads to the following situation: the 3 tuples of g;,
are assigned to 3 out of 4 processing units, say, p1,p2 and ps. All further processing is performed
by these three processing units because of their local queues, i.e. |¢;|,i € {1,2,3} increases to 102
while |gs| = 0 and py is idle throughout the entire processing. So, 25% of the available processing
resources are wasted. .

Example 5.3 shows that even in situations that offer a high potential of parallelism, DTE may yield
results of only poor quality.

Theorem 5.4 Let (E, Dg) be a pipeline segment of length n. DTE is NLA-optimal
a) ifn=1.

b) during [to,tggTE)] or

For t > tggE) a situation as described in Example 5.3 may occur.

5.3 Data Threaded Execution with Redistribution

DTE/R overcomes this drawback by redistribution of intermediate results. Every processing unit
appends all its output to the input queue g;;, unless no further processing is required. The following
invariant specifies DTE/R

Elt:i : lt(pz) =0A |qm| >0 = OCCUpyPTOC(tapz',CIm;Q') (15)
where ¢' = ¢y, if p(d) <n and gy otherwise.

Theorem 5.5 DTE/R is NLA-optimal for any pipeline segment (E, Dy).

6 Quantitative Assessment

To verify the analytical results, we implemented the above mentioned strategies and carried out
experiments on an SGI Origin2000 shared-memory machine with 16 processors and 8 GB main
memory. The control-flow of each processing unit is realized by a thread.

Our hash table implementation reaches a performance comparable to the Berkeley Hash/DB-
package, as preliminary experiments showed.

As the description of the algorithms suggests, different processing units share common queues,
which may lead to locking conflicts if implemented in a naive way. We circumvented such short-
comings by a more sophisticated queue design including evasion mechanisms to avoid lock conflicts
largely®. The more complex queue implementation adds some extra overhead, but pays back by
avoiding unnecessary locks and enabling a higher degree of parallelism instantly.

For each experiment, we first generate the base relations according to the query specifications,
then build the hash tables sequentially and after that, execute the strategy considered. To obtain
stable results we took the median of 10 runs.

3For a detailed description of this issue see [15].



REGION | NATION | SUPPLIER | CUSTOMER | PART | PARTSUPP | ORDER | LINEITEM
5 25 10k 150k 200k 800k 1500k 6000k

Table 1: TPC-D Benchmark: relations & cardinalities

6.1 TPC-D Benchmark

The initial set of experiments is a subset of the TPC-D Benchmark [17]. According to the focus
of this paper, we execute only the join pipelines leaving out the aggregations. For each query, we
generated several right-deep query trees using differen% j)oin orders.

"

% (where p is PE, DTE, or DTE/R)
using 1 < r < 16 processors for query Q5. The join order is (REGION X (NATION X (SUPPLIER
X (LINEITEM X (ORDER X CUSTOMER))))), i.e. CUSTOMER is the right-most input relation. DTE
performs slightly (< 5%) better than DTE/R, as the simple local queues of DTE cause less overhead
than the complex global queue of DTE/R. PE performs significantly worse than the other strategies.
t(DTE/R)(l)
t(N) (7‘)
DTE/R both achieve near-linear speedup, while PE performs significantly worse suffering from
discretization errors.

Figures 5 and 6 depict relative execution times and speedup behavior for the same query (Q5),
but with reverse join order (CUSTOMER X (ORDER X (LINEITEM X (SUPPLIER X (NATION X RE-
GION))))), i.e. with REGION as right-most input relation. PE—still suffering from discretization
errors—performs significantly worse than DTE/R that again achieves near-linear speedup. The be-
havior of DTE, however, is completely different than in the previous experiment. Using up to 5
processors, the execution time is similar to that of DTE/R, but then it gets the worse the more
processors are used. The speedup is limited to 5 processors, which means that the execution time
does not decrease using more than 5 processors. The reason for this is that there are only 5 tuples in
relation REGION. Thus, at most 5 processors can participate in executing the pipeline segment while
any additional processor stays idle. This situation is similar to the one described in Example 5.3.

Finally, Figures 7 and 8 depict relative execution times and speedup behavior for query Q7 with
join order (NATION X (SUPPLIER X (LINEITEM X (ORDER X (CUSTOMER X NATION))))). Here, DTE
achieves nearly the same performance and speedup as DTE/R whenever r = f%] ,x € N holds, but
performs worse in any other case.

Further experiments showed, that the different behavior of DTE and DTE/R as described above
is triggered only by the cardinality of the right-most input relation, here. The remaining join ordering
has the same impact on both DTE and DTE/R as all intermediate results consist of more tuples
than there are processors. We will discuss this in more detail in the next section.

Figure 3 depicts the relative execution times

Figure 4 depicts the speedup behavior of all strategies for query Q5. DTE and

6.2 Extreme Skew

Example 5.3 and the experiments above demonstrate that DTE may perform worse than DTE/R
as DTE is not NLA-optimal on [tggTE),tgggE)]. Of course, the difference between both strategies
depends on the severity of skew. To examine the impact of skew quantitatively, we used a two-join-
query with base relations of equal size (240k tuples). We varied the skew by choosing attribute value

distributions and ranges of join attributes so that:
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e In the first join, h input tuples hit and find f =

hitting tuples f — 1 tuples find no partner, i.e. every f-th input tuple finds f partners. For
instance, with h = 2 the 120,000th and the 240,000th, i.e. last, tuple hit and entail 120,000
output tuples each.

tuples each. Between two subsequent

e The second join produces exactly one output tuple from each input tuple.

The parameter h provides a kind of metric for the skew: the smaller h is, the greater the skew
is. In our experiments, we varied h from 1 to 10. Figures 9 through 12 show the relative execution
times on two to five processors, respectively.

With h = 1, DTE performs significantly worse than DTE/R. First, all processors are involved in
executing the first join, i.e. just probing the input tuples against the first hash table without finding
any partner. Only the last input tuple finds partners, which then have to be processed through
the second join by one thread only. With DTE/R, however, the tuples are re-distributed and all
processors participate in executing the second join.

With increasing h, i.e. decreasing skew, the differences between the strategies become smaller as
DTE achieves better load balancing, then. DTE even beats DTE/R, whenever h is a multiple of the



number of processors.

7 Conclusion

In this paper we presented a formal framework to model and analyze pipeline processing strategies
for parallel query execution. The key notion developed is the concept of NLA-optimality which
reflects the execution strategy’s ability of ad-hoc resource utilization. Strategies fulfilling the stated
optimality criteria guarantee a near-optimal query execution. We presented a thorough analysis of
the standard execution technique and data parallel algorithms of which one achieves NLA-optimality.

The analytical approach taken has been verified by a comprehensive quantitative assessment
of the different techniques. The experiments distinctly exhibit the effectiveness of our approach
showing that NLA-optimal strategies yield near-linear speedup and are resistant against various
kinds of skew.

The concepts presented have direct application to existing database systems. DTE/R can be
used as one single multi-way join operator within a larger QEP: providing a transparent interface
to parallel execution that does not require any scheduling. Moreover, DTE/R can also be used in
this way to easily boost sequential query evaluation systems put on a parallel platform by using a
fixed maximal degree of parallelism.

The promising results obtained raise the question whether parts of the pre-processing phase
can also be efficiently integrated with NLA-optimal strategies. In addition, we intend to address
transparent parallelism in the context of multi-query optimization.
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A Proofs

A.1 Proof of Theorem 4.5

Let w denote the total amount of work w = w(D). In case all units of work are independent it
w

is easy to see that it takes the optimal PPS the processing time of — with r is the number of
r



processing units. Now, let A € [0, 1] be the largest ratio of work that cannot be parallelized due to

1
data dependencies. Obviously, as long as A < . holds, the optimal parallelization is still feasible.

1
However, in case A > —, t(°?Y) is bound by Aw:
r

1
Aw if N> -
t(OIJt) =< w r
—  else
r
For the further considerations let us have a look at an example: For D = {dy,...,di5} we assume

w(d;) = 1 and data dependencies be di3,d14,d;5,d16 such that dig = ®(d13) etc. Thus, A computes
1
to 1 A possible schedule with processing time 7 is depicted in Figure 13 (the four tuple that

have to be processed one after the other are grey). On the other hand, the shortest possible thus
optimal schedule requires only 4 time units for execution as Figure 14 shows. However, without this
look-ahead on how much work a tuple will cause a PPS pu is bound by

1-MNw

) < + \w.

The ratio of t® to ¢(°P) in dependency of X is

) i—1+1 ifA>1,
e ST r

rA—A+1 else.

1
For X\ approaching o

1 1 1
lim ———4+1=2-—
1rx r r

AS—
r

increases monotonically as well as

1
IlmrA—-A+1=2— -
1 r

AS—
r

1
does. Thus, W is both continuous and maximal in A = —. Leading to
r

W) <2-—

1
r

To proof the general upper bound we consider the case A = 1. No parallelism can be exploited
and the upper bound for ¢(#) as well as for ¢(P?) is ¢(sed), O
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A.2 Proof of Theorem 5.2
Casel: n=1
The situation where l;(p;) = 0 for some i occurs only if |g;n| = 0. As g, is the only queue in

Q@ \ {gout} the theorem holds.

Case2: n>1 .
Consider a input relation Do such that ®*(Dg) # 0 for all <. PE has a minimum startup of

tgl'u:,,E) Z (n - ]-)(wprobe + wpa.ss)

during which at least one processing unit is idle but |g;,| > 0. |

A.3 Proof of Theorem 5.4

For n = 1 see Theorem 5.2.
Let n > 1. As long as |gn |+ > 0 Condition 1.3 implies I;(p;) = 1. The length of g;,, is monotonically
decreasing and

tOTE) — min{t : |gin|¢ = 0}
Which completes the proof. m|

A.4 Proof of Theorem 5.5

Assume

D it ) (i) < [P

holds for an interval [t1, 2] with to —¢; > 0. For all intervals [u;,v;] C [t1,t2] where |gin|¢ > 0 with
t e Ui[ui, ’Ui]

U; = V;



immediately follows because of Invariant I.5. Consequently,

to
/ z lgl: dt = /u-[ o] Z lqls dt+/T Z lgl dt =0

B geQ\{gou? i1 4€Q\{gou} \Uiluivil e\ {gou}

since all intervals [u;, v;] are of empty size. O

B Algorithm for the PAP

To obtain a discrete approximation of the PAP, we first assign one single processing unit to each
join and then gradually add processing units always to the currently slowest join until all processing
units are distributed (see Figure 15). The overall execution time—dominated by the slowest join—is
step by step reduced as far as possible.

input: n,7, (v1,...,0);
output: (r1,...,7);

for 1< 1 to n do
r; + 1;

od;

Tavail <~ T — n;

while 7.0 >0 do

! LY vi
find smallest j with -L = max{i};
rj 1 Ti

Tj —ri+1;
T avail < Tavail — ]-;

od.

Figure 15: Algorithm to assign r processing units to n joins

s
Obviously, this algorithm minimizes max{r—z} and hence
Ty

F = max{ } - — (cf. Section 5.1)

if the PAP has no integer solution. In case the PAP has an integer solution, the algorlthm finds the

v;
exact solution as the r; are increased, and hence all v are decreased, until — = — holds for all s.
r; Ti



